282,804 research outputs found

    Cross sections for pentaquark baryon production from protons in reactions induced by hadrons and photons

    Get PDF
    Using hadronic Lagrangians that include the interaction of pentaquark Θ+\Theta^+ baryon with KK and NN, we evaluate the cross sections for its production from meson-proton, proton-proton, and photon-proton reactions near threshold. With empirical coupling constants and form factors, the predicted cross sections are about 1.5 mb in kaon-proton reactions, 0.1 mb in rho-nucleon reactions, 0.05 mb in pion-nucleon reactions, 20 μ\mub in proton-proton reactions, and 40 nb in photon-proton reactions.Comment: 14 pages, 7 figure

    Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid

    Get PDF
    The thermodynamics and kinetics of the bulk metallic glass forming Mg65Cu25Y10 liquid were investigated using differential scanning calorimetry and three-point beam bending. The experiments lead to the determination of the thermodynamic functions as well as the viscosity of the supercooled liquid. The viscosity shows a temperature dependence, which is consistent with that of a strong glass similar to Zr–Ti–Cu–Ni–Be bulk metallic glasses or sodium silicate glasses. This contrasts with more fragile conventional metallic glass formers or pure metals. The relatively weak temperature dependence of the thermodynamic functions of the supercooled liquid is related to these sluggish kinetics in the supercooled liquid. Entropy, viscosity, and kinetic glass transition are compared in the frameworks of the fragility concept and the Adam–Gibbs theory. Strong liquid behavior retards the formation of crystals kinetically and thermodynamically

    Optical recombination lines as probes of conditions in planetary nebulae

    Get PDF
    Since the last IAU symposium on planetary nebulae (PNe), several deep spectroscopic surveys of the relatively faint optical recombination lines (ORLs) emitted by heavy element ions in PNe and H II regions have been completed. New diagnostic tools have been developed thanks to progress in the calculations of basic atomic data. Together, they have led to a better understanding of the physical conditions under which the various types of emission lines arise. The studies have strengthened the previous conjecture that nebulae contain another component of cold, high metallicity gas, which is too cool to excite any significant optical or UV CELs and is thus invisible via such lines. The existence of such a plasma component in PNe and possibly also in H II regions provides a natural solution to the long-standing problem in nebular astrophysics, i.e. the dichotomy of nebular plasma diagnostics and abundance determinations using ORLs and continua on the one hand and collisionally excited lines (CELs) on the other.Comment: 8 pages, 3 figures, review talk presented to the IAU Symposium #234, ``Planetary nebulae in our Galaxy and beyond'', held in Hawaii, USA, April 3-7 200

    Helium star evolutionary channel to super-Chandrasekhar mass type Ia supernovae

    Full text link
    Recent discovery of several overluminous type Ia supernovae (SNe Ia) indicates that the explosive masses of white dwarfs may significantly exceed the canonical Chandrasekhar mass limit. Rapid differential rotation may support these massive white dwarfs. Based on the single-degenerate scenario, and assuming that the white dwarfs would differentially rotate when the accretion rate M˙>3×107Myr1\dot{M}>3\times 10^{-7}M_{\odot}\rm yr^{-1}, employing Eggleton's stellar evolution code we have performed the numerical calculations for \sim 1000 binary systems consisting of a He star and a CO white dwarf (WD). We present the initial parameters in the orbital period - helium star mass plane (for WD masses of 1.0M1.0 M_{\odot} and 1.2M1.2 M_{\odot}, respectively), which lead to super-Chandrasekhar mass SNe Ia. Our results indicate that, for an initial massive WD of 1.2M1.2 M_{\odot}, a large number of SNe Ia may result from super-Chandrasekhar mass WDs, and the highest mass of the WD at the moment of SNe Ia explosion is 1.81 MM_\odot, but very massive (>1.85M>1.85M_{\odot}) WDs cannot be formed. However, when the initial mass of WDs is 1.0M1.0 M_{\odot}, the explosive masses of SNe Ia are nearly uniform, which is consistent with the rareness of super-Chandrasekhar mass SNe Ia in observations.Comment: 6 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    Jet conversions in a quark-gluon plasma

    Get PDF
    Quark and gluon jets traversing through a quark-gluon plasma not only lose their energies but also can undergo flavor conversions. The conversion rates via the elastic q(qˉ)ggq(qˉ)q(\bar q)g\to gq(\bar q) and the inelastic qqˉggq\bar q\leftrightarrow gg scatterings are evaluated in the lowest order in QCD. Including both jet energy loss and conversions in the expanding quark-gluon plasma produced in relativistic heavy ion collisions, we have found a net conversion of quark to gluon jets. This reduces the difference between the nuclear modification factors for quark and gluon jets in central heavy ion collisions and thus enhances the p/π+p/\pi^+ and pˉ/π{\bar p}/\pi^- ratios at high transverse momentum. However, a much larger net quark to gluon jet conversion rate than the one given by the lowest-order QCD is needed to account for the observed similar ratios in central Au+Au and p+p collisions at same energy. Implications of our results are discussed.Comment: version to appear in PR

    Off-broadside main beam design for frequency invariant beamformers

    Get PDF
    In a previously proposed design method for frequency invariant beamforming, the design for the case of an off-broadside main beam is not satisfactory. After a detailed analysis, we propose two methods to overcome this problem: one is to increase the length of the FIR filter attached to each sensor, as a result, we need to sample the transformed desired response more densely in the associated direction; the other one is to design a broadside main beam first, then it is convolved with appropriate steering delay filters. Design examples show that the two methods can provide satisfactory results

    Self-modifiable color petri nets for modeling user manipulation and network event handling

    Get PDF
    A Self-Modifiable Color Petri Net (SMCPN) which has multimedia synchronization capability and the ability to model user manipulation and network event (i.e. network congestion, etc.) handling is proposed in this paper. In SMCPN, there are two types of tokens: resource tokens representing resources to be presented and color tokens with two sub-types: one associated with some commands to modify the net mechanism in operation, another associated with a number to decide iteration times. Also introduced is a new type of resource token named reverse token that moves to the opposite direction of arcs. When user manipulation/network event occurs, color tokens associated with the corresponding interrupt handling commands will be injected into places that contain resource tokens. These commands are then executed to handle the user manipulation/network event. SMCPN has the desired general programmability in the following sense: 1) It allows handling of user manipulations or pre-specified events at any time while keeping the Petri net design simple and easy. 2) It allows the user to customize event handling beforehand. This means the system being modeled can handle not only commonly seen user interrupts (e.g. skip, reverse, freeze), the user is free to define new operations including network event handling. 3) It has the power to simulate self-modifying protocols. A simulator has been built to demonstrate the feasibility of SMCPN
    corecore